Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin

Identifieur interne : 000228 ( Main/Repository ); précédent : 000227; suivant : 000229

Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin

Auteurs : RBID : Pascal:13-0370752

Descripteurs français

English descriptors

Abstract

Unidirectional growth of silicon nanowires (SiNWs) can be achieved via a vapor-liquid-solid (VLS) mechanism. Interestingly, when adopting low surface tension metals such as tin or indium to mediate the growth of SiNWs in a plasma-assisted VLS process, the standard scenario is challenged by the fact that low surface tension metals tend to coat the high energy sidewalls of SiNWs. Moreover, we show that tin-assisted SiNW growth can continue without any apparent metal droplet on top. To address these issues, we investigate the time evolution of tin-assisted SiNW growth. We suggest that, during the initial growth phase, an ultrathin metal layer wetting the SiNW sidewalls allows silicon adatoms to diffuse toward the top of the nanowires, and thus enhances the axial growth while suppressing the radial one (in a way similar to molecular beam epitaxy growth of SiNWs). Later on, the wetting layer can assist the growth even when the tin droplets are exhausted from the top of SiNWs. We propose that this phenomenon may hold for all low surface tension metal mediated VLS growth of SiNWs and could be helpful to tailor them for specific device applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0370752

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin</title>
<author>
<name sortKey="Misra, Soumyadeep" uniqKey="Misra S">Soumyadeep Misra</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>LPICM, Ecole Polytechnique, CNRS</s1>
<s2>91128 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Palaiseau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>LINWEI YU</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>LPICM, Ecole Polytechnique, CNRS</s1>
<s2>91128 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Palaiseau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>WANGHUA CHEN</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>LPICM, Ecole Polytechnique, CNRS</s1>
<s2>91128 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Palaiseau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roca I Cabarrocas, Pere" uniqKey="Roca I Cabarrocas P">Pere Roca I Cabarrocas</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>LPICM, Ecole Polytechnique, CNRS</s1>
<s2>91128 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Palaiseau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0370752</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0370752 INIST</idno>
<idno type="RBID">Pascal:13-0370752</idno>
<idno type="wicri:Area/Main/Corpus">000385</idno>
<idno type="wicri:Area/Main/Repository">000228</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adatoms</term>
<term>Directional solidification</term>
<term>Droplets</term>
<term>Growth mechanism</term>
<term>High energy</term>
<term>Indium</term>
<term>Molecular beam epitaxy</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Plasma assisted processing</term>
<term>Silicon</term>
<term>Surface tension</term>
<term>VLS growth</term>
<term>Wettability</term>
<term>Wetting</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mouillage</term>
<term>Mouillabilité</term>
<term>Traitement par plasma</term>
<term>Silicium</term>
<term>Synthèse nanomatériau</term>
<term>Solidification dirigée</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Méthode VLS</term>
<term>Tension superficielle</term>
<term>Indium</term>
<term>Mécanisme croissance</term>
<term>Haute énergie</term>
<term>Gouttelette</term>
<term>Adatome</term>
<term>Epitaxie jet moléculaire</term>
<term>Substrat métal</term>
<term>6808B</term>
<term>8116</term>
<term>8107V</term>
<term>8107B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Unidirectional growth of silicon nanowires (SiNWs) can be achieved via a vapor-liquid-solid (VLS) mechanism. Interestingly, when adopting low surface tension metals such as tin or indium to mediate the growth of SiNWs in a plasma-assisted VLS process, the standard scenario is challenged by the fact that low surface tension metals tend to coat the high energy sidewalls of SiNWs. Moreover, we show that tin-assisted SiNW growth can continue without any apparent metal droplet on top. To address these issues, we investigate the time evolution of tin-assisted SiNW growth. We suggest that, during the initial growth phase, an ultrathin metal layer wetting the SiNW sidewalls allows silicon adatoms to diffuse toward the top of the nanowires, and thus enhances the axial growth while suppressing the radial one (in a way similar to molecular beam epitaxy growth of SiNWs). Later on, the wetting layer can assist the growth even when the tin droplets are exhausted from the top of SiNWs. We propose that this phenomenon may hold for all low surface tension metal mediated VLS growth of SiNWs and could be helpful to tailor them for specific device applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>34</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MISRA (Soumyadeep)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LINWEI YU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WANGHUA CHEN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROCA I CABARROCAS (Pere)</s1>
</fA11>
<fA14 i1="01">
<s1>LPICM, Ecole Polytechnique, CNRS</s1>
<s2>91128 Palaiseau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>17786-17790</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000501532880480</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0370752</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Unidirectional growth of silicon nanowires (SiNWs) can be achieved via a vapor-liquid-solid (VLS) mechanism. Interestingly, when adopting low surface tension metals such as tin or indium to mediate the growth of SiNWs in a plasma-assisted VLS process, the standard scenario is challenged by the fact that low surface tension metals tend to coat the high energy sidewalls of SiNWs. Moreover, we show that tin-assisted SiNW growth can continue without any apparent metal droplet on top. To address these issues, we investigate the time evolution of tin-assisted SiNW growth. We suggest that, during the initial growth phase, an ultrathin metal layer wetting the SiNW sidewalls allows silicon adatoms to diffuse toward the top of the nanowires, and thus enhances the axial growth while suppressing the radial one (in a way similar to molecular beam epitaxy growth of SiNWs). Later on, the wetting layer can assist the growth even when the tin droplets are exhausted from the top of SiNWs. We propose that this phenomenon may hold for all low surface tension metal mediated VLS growth of SiNWs and could be helpful to tailor them for specific device applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H45G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mouillage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Wetting</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Mouillabilité</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Wettability</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Traitement par plasma</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Plasma assisted processing</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Solidification dirigée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Directional solidification</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode VLS</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>VLS growth</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método VLS</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Tension superficielle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Surface tension</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Haute énergie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>High energy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Alta energía</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gouttelette</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Droplets</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Adatome</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Adatoms</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Substrat métal</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>6808B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>350</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000228 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000228 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0370752
   |texte=   Wetting Layer: The Key Player in Plasma-Assisted Silicon Nanowire Growth Mediated by Tin
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024